Non-compact Symplectic Toric Manifolds

نویسنده

  • YAEL KARSHON
چکیده

The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unimodular (“Delzant”) polytope. This gives a bijection between simple unimodular polytopes and isomorphism classes of compact symplectic toric manifolds. In this paper we extend Delzant’s classification to non-compact symplectic toric manifolds. For a non-compact symplectic toric manifold the image of the moment map need not be convex and the induced map of the quotient need not be an embedding. Moreover, even when the map of the quotient is an embedding, its image no longer determines the symplectic toric manifold; a degree two characteristic class makes an appearance. Nevertheless, the quotient is a manifold with corners, and the induced map from the quotient to the dual of the Lie algebra is what we call a unimodular local embedding. We classify non-compact symplectic toric manifolds in terms of unimodular local embeddings of manifolds with corners into the duals of the corresponding Lie algebras and degree two cohomology classes on these manifolds with corners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic fillability of toric contact manifolds

According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than π are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and most of them are strongly symplectically fillable. The proof is based on the...

متن کامل

Non-Kähler symplectic manifolds with toric symmetries

Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...

متن کامل

A compact symmetric symplectic non-Kaehler manifold dg-ga/9601012

In this paper I construct, using off the shelf components, a compact symplectic manifold with a non-trivial Hamiltonian circle action that admits no Kaehler structure. The non-triviality of the action is guaranteed by the existence of an isolated fixed point. The motivation for this work comes from the program of classification of Hamiltonian group actions. The Audin-Ahara-Hattori-Karshon class...

متن کامل

A Note on Toric Contact Geometry

After observing that the well-known convexity theorems of symplectic geometry also hold for compact contact manifolds we use this fact together with a recent symplectic orbifold version of Delzant’s theorem due to Lerman and Tolman [LT] to show that every compact toric contact manifold can be obtained by a contact reduction from an odd dimensional sphere.

متن کامل

Fukaya Categories and the Minimal Model Program: Creation

We prove that small blow-ups or reverse flips (in the sense of the minimal model program) of rational symplectic manifolds with trivial centers create Floer-non-trivial Lagrangian tori. We give examples of explicit mmp runnings and descriptions of Floer non-trivial tori in the case of toric manifolds, polygon spaces, and moduli spaces of flat bundles on punctured two-spheres (moduli of paraboli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009